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ABSTRACT

Comprehensive numerical solutions of the steady state incompressible viscous flow over a
three-dimensional backward-facing step up to Re = 800 are presented. The results are ob-
tained by the least-squares finite element method (LSFEM) which is based on the velocity-
pressure-vorticity formulation. The computed model is of the same size as that of Armaly’s
experiment. Three dimensional phenomena are observed even at low Reynolds number. The
calculated values of the primary reattachment length are in good agreement with experi-
mental results.



1. INTRODUCTION

It is well known that for backward-facing step flows the reattachment length obtained by 2D
calculations cannot match with the experimental results for Re > 450. All the deviations
of two-dimensional simulations from experimental results are mainly due to the growing
effects of three-dimensionality as Reynolds number increases. In recent years, the devel-
opment of numerical schemes in fluid dynamics has been concentrated on the solution of
three-dimensional problems. Ku et al.! applied a pseudospectral matrix element method to
simulate the same three-dimensional problem only up to Re = 450 by employing the primi-
tive variable formulation. A simplified marker-and-cell finite-difference scheme is applied by
Ikohagi and co-workers ? for the same 3D problem in curvilinear coordinates. However, no
comparisons have been made with either the experimental data or other simulation results,
and thus no primary conclusions can be really made.

In this paper, we report our results for the 3D backward-facing step flow, and compare
with experimental results. We use the least-squares finite element method (LSFEM) 345,
For incompressible viscous flows, the LSFEM is based on the first-order velocity-pressure-
vorticity formulation. This method uses C° elements to discretize the equations and mini-
mizes the L, norm of the equation residuals, and results in a symmetric and positive-definite
algebraic system which can be solved by simple matrix-free iterative methods. This method
leads to a minimization problem, and the choice of elements are thus free of the limita-
tion of the Ladyzhenskaya-Babuska-Brezzi(LBB) conditions®. The LSFEM is also free of
any parameters. Furthermore, all unknown variables are solved in a fully coupled manner,
and only simple physical boundary conditions are imposed, no artificial numerical boundary
conditions need be devised.

2. VELOCITY-PRESSURE-VORTICITY FORMULATION

The mathematical formulation and numerical scheme of the LSFEM for 3D Navier-Stokes
equations can be found in Jiang et al.®. For completeness, here we give a brief description of
the method. The steady-state incompressible Navier-Stokes equations can be recast as the
following nondimensional first-order quasi-linear velocity-pressure-vorticity formulation

V.a = 0, i Q, (1)

_ _ 1 - 4 :
u-Vu+Vp+ﬁ—erw = f, in Q, (2)
@—-Vxia = 0, in (3)

in which @i denotes the velocity, p the pressure, f the body force, Re the Reynolds number,
and §2 the low domain. Here an independent vector, the vorticity @ = V X 1, is introduced
to yield the first-order form such that the C° element can be used. As proved by Jiang et



al. 5, the following compatibility condition is required for three-dimensional cases to make
the system elliptic and will not be detailed here,

V.o =0 (4)

The first-order elliptic system in Cartesian coordinates for three-dimensional problems can
be expressed as
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This first-order system has seven unknowns and eight equations. Jiang® proved that
the system is determined by introducing a dummy variable ¢ which satisfies the boundary
condition ¢ = 0 on the boundary. The gradient, V¢, is then added to the equation of
vorticity definition, and thus yields an elliptic and determined system with eight unknowns
and eight equations. Taking divergence of this vorticity equation will lead to A¢ = 0, thus
¢ =0 in 2. Note that the introduction of a dummy variable ¢ is purely for the purpose of
proving the ellipticity of the system (5). In real calculation, no extra unknown is needed.

As shown in Jiang et al. ®, the 3D incompressible Navier-Stokes equations must have
three boundary conditions on each boundary. For the backward-facing step flow problem,
the following boundary conditions are considered :

(a) v = v = w = 0 on the wall;
(b) u = specified, v = w = 0 at the well-developed inflow;
(c)v = w = 0, p = constant (reference) at the outflow;

(d)wz = wy = 0, w = 0 at the symmetric plane.



Note that no derivatives are involved in the boundary conditions, only the simple physical
boundary conditions are imposed, and vorticity boundary conditions are used only at the
symmetric plane.

3. NUMERICAL SCHEME

First, the Newton’s scheme is employed to linearize the quasi-linear system, thus we have,
for example,
au o au au o [} au o
u'a;~“5;+u(3;) - v’(3;) (6)

where ()° denotes the evaluation of the variable from previous iteration level. Then the
linearized first-order equations can be written as a standard first-order system

Lu=1f in Q (7)
where L is a first-order partial differential operator :
Ou Ou du
Lu =A;—+ A2—+ As— + A
u 1 3z + A» ay + Ag 5z + u (8)

The coefficient matrices in the general form of the first-order system for three-dimensional
problems are

1 0 0 00 0 0] 0 1 0 0 0 0 0]
x> 0 0 10 0 O w0 0 0 0 0 &
0 »o 0 00 0 3 0 v 01 0 0 0
0 0 =2 00 X+ 0 0 0 » 0 32 0 0
Ar=19 o 0 00 0 ol A" 00 -100 0 0 (9)
0 0 1 000 O 00 0 0 0 0 O
0 -1 0 00 0 O 1 0 0 0 0 0 O
0 0 001 0 0| [0 0 0 0 0 1 O |
"0 0 1 0 0 0 0] 0 0 0 000 O]
w> 0 0 0 0 F 0 ge (%) (B 0000
0 w° 0 0 & 0 0 Sy (&) (r oooo
0 0 w1 0 0 O dwyo (dwyo (Bwy g g (0 0
As=| g 1 9000 00| %7 85) (85) (65 0100]| 30
-1 0 0 0 O O O 0 0 0 0010
0o 0 o0 0 0 0 O 0 0 0 000 1
| 0 0 0 0 0 0 1] 0 0 0 0000




and the force and state variable vectors are
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The linearized first-order equations are solved by the LSFEM 2 which results in a sym-
metric and positive-definite algebraic equation. A Jacobi preconditioned conjugate gradient
method is employed to solve the linear algebraic equations. In the conjugate gradient method,
the major computation is the multiplication of the global matrix with the global vector, and
this can be done in an element-by-element manner without forming the global matrix”. To
further save the storage, the current algorithm does not even form the element matrices.
We directly calculate the product of the element matrix and the element vector, and the
Jacobi preconditioner can also be easily formed at the same time. In this way, we store only
several global vectors, and the derivatives of the shape functions at Gaussian points for each
element.

4. NUMERICAL RESULTS

The geometry and boundary conditions for the 3D model are shown in Figure 1. Due to
the symmetry, only half of the domain is considered. The step has a height $=4.9 mm, and
the inlet boundary is located 3.5 step heights upstream of this step. The channel downstream
of the step has a height of 10.1 mm that provides an expansion ratio of 1 : 1.9423, and the
half-span W = 90mm that provides an aspect ratio for the test channel is 18 : 1.01. The
length L measured from the step to the end of the calculation domain is 45 step heights, which
is 3.11 times the maximum experimentally measured reattachment length of the primary
recirculation region for the Renolds numbers interested. The Reynolds number Re = UD/v
is based on the hydraulic diameter (D = 10.4mm) of the inlet channel, and the average
velocity is two-thirds of the maximum inlet velocity (normalized to unity) on the mid-span
plane. The various Reynolds numbers are obtained by varying the kinematic viscosity v.
The velocity profiles obtained by solving the 2D Poisson’s equation for a well-developed flow
are imposed as the inflow boundary conditions. The outflow boundary conditions are defined
such that a parallel flow and a constant pressure field exist.

The computation was performed on the mesh with 54400 nonuniform trilinear elements
(6 x 16 x 20 for inlet channel and 82 x 32 x 20 for the test channel). The smallest element
has the size of 0.1251, 0.05714 and 0.421 steps in z,y and z direction individually, while the



largest element has the size of 3.0, 0.06938 and 1.68367 steps respectively. Figure 2 shows
the nonuniform mesh which has more elements close to the sidewall, the floor and the roof
in the test channel (see Figure 2). The solutions of the Stokes problem are taken as initial
guesses for the case of Re = 100, and the "converged” solutions are then used as initial
guesses for higher Reynolds numbers. The ”converged” solutions are based on those whose
L, norm of the residuals less than 1.0 x 10~*. The problem is solved using about 5M words
of the memory on a CRAY-YMP. Simulation of the three-dimensional model is performed
from Re = 100 to 800.

Spanwise flow structure

The velocity profiles at three spanwise locations for Re = 277 and 800 are shown in
Figures 3 and 5. At Re = 277, there is a slight change in the spanwise flow structure and
reattachment length. At Re = 800, the velocity profiles change significantly in spanwise
direction, and the reattachment length increases rapidly as moving toward the mid-plane.
Figures 4 and 6 depict the pressure contours at these two Reynolds numbers. Again, the
change in spanwise pressure distribution is more obvious as Reynolds numberincreases. Most
researchers predicted the reattachment length well up to Re < 450 by their 2D simulations,
and thought that the two-dimensional phenomena were maintained until Re ~ 450. Numer-
ical results from the present method, however, show that the three-dimensionality are quite
significant even at low Reynolds number (e.g. Re=277).

Figure 7 illustrates the contours of vorticity w, from z = 6.5cm to the sidewall (z =
9.0 cm) at Re = 277. The dashed lines indicate the negative contour values. As shown in the
Figures, the vortex is stronger near the sidewall and has negligible influence on the region near
the mid-plane. The study of velocity vectors along the span at different downstream locations
provides better view of the three-dimensijonal phenomena, see Figure 8. The behaviour of the
inward flow toward the mid-span at the top roof and the outward flow toward the sidewall
(z/W = 1.0) at the channel floor contributes the three-dimensional phenomena. This three-
dimensionality around the corner of the sidewall and the step can also be found at lower
Reynolds numbers but less significant.

A series of plots of cross-flow velocity vectors and contours of streamwise vorticity, w., at
different downstream locations are shown in Figures 9 - 14. At Re = 389, there is a counter-
clockwise (negative) vortex on the corner of sidewall and channel floor. The cross-flow
velocity vectors shown in Figure 10 depict that there is a weaker clockwise (positive) vortex
close to the channel ceiling as flow moving downstream. The size of this positive vortex grows
in the streamwise direction. Both vortexes become stronger as Reynolds number increases,
and persist further downstream with decreasing strength.

It is found that except in the inlet channel and in the region which is very far downstream
of the step, the three-dimensionality is significant at the downstream, in the vicinity of the
step. A study of spanwise flow structure provides further details. The spanwise distribution
of velocity profiles for streamwise velocity, u, at various z-locations and at a fixed y-position



for Re = 648 are shown in Figure 15. At y = 7.5mm, all velocity profiles close to the
mid-plane are basically two-dimensional. The negative velocities in the figure indicate that
a second separation bubble occurs on the ceiling, and its thickness grows as close to the
sidewall. Aty = 2.35mm, the z-component velocity, u, first increases rapidly in about the
thickness of boundary layer, then drops and resumes two-dimensional flow from z/W = 0.5
to the mid-plane (z/W = 0.0).

Figure 16 demonstrates the three-dimensionality by depicting the spanwise distribution
of the reattachment length for the primary separated-flow region. The numerical data of
spanwise reattachment length vs. various Reynolds numbers are listed in Table 1. The
reattachment length is pretty much constant close to the mid-plane and decreases as moving
toward the sidewall. It is interesting to note that next to the sidewall, the reattachment
length increases rapidly. This phenomenon might be due to the interaction of primary
recirculation vortex and the corner vortex between the sidewall and floor as shown in, for
example, Figures 9 and 10. Figure 17 shows the computed reattachment length of the
primary recirculation zone, and compares with Armaly et al.’s® experimental results. The
corresponding pointwise data obtained by the LSFEM and the experiment are given in Table
2. Since no tabular results are given, here the cited data from experiment are obtained by
optically digitizing Figure 14 in Armaly et al.’s paper.

Table 2 shows that in the Re range for which most simulations fail to predict the reattach-
ment length because of the three-dimensional phenomenon (Re = 450 ~ 800), the calculated
results by the LSFEM agree very well with the experimental results up to Re = 800.

As Reynolds number increases, an additional separated-flow region occurs near the chan-
nel ceiling. Figure 18 illustrates the spanwise detachment (z4/5) and reattachment (z5/S)
lines of this second eddy. The present results show that as Reynolds number increases,
this upper-wall eddy propagates toward the mid-plane with its length decreasing toward the
mid-plane. For example, as Reynolds number increases from 600 to 800, its length changes
from 17.5 to 22 step heights at z/W = 0.97708, and changes from 0.2 to 9.36 step heights
at z/W = 0.76. The experimentally observed upper-wall eddy at the mid-plane was not
observed in the current simulation. The spanwise variation of detachment and reattachment
length of the second eddy for various Reynolds numbers are given in Tables 3 and 4.

5. CONCLUSIONS

The steady-state three-dimensional backward-facing step problem is simulated using the
least-squares finite element method. The computed spanwise flow structure clearly depicts
the three-dimensionality. The prediction of primary reattachment length are in good agree-
ment with experimental results. Further developments are under way for solving time-
dependent problems.
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Table 1. Spanwise Distribution of Primary Reattachment Length (z,/5)

z{W | Re=389 | Re=500 | Re=600 | Re=648 | Re=700 | Re=800
0.97708 | 4.7873 | 4.7598 | 4.8502 | 4.7166 | 4.8231 | 4.7052
0.95243 | 4.5224 | 4.5636 | 4.5934 | 4.5244 | 4.5810 | 4.5098
0.92591 | 4.4467 | 4.4700 | 4.4290 | 4.3849 | 4.3936 | 4.3248
0.89739 | 4.8376 | 4.7809 | 4.6438 | 4.5963 | 4.5364 | 4.4150
0.86670 | 5.6686 | 5.5985 | 5.4196 | 5.3551 | 5.2089 | 5.0171
0.83370 | 6.5050 | 6.6123 | 6.5767 | 6.5552 | 6.4553 | 6.2616
0.79819 | 6.9495 | 7.2317 | 7.3644 | 7.3418 | 7.4005 | 7.4756
0.76000 | 7.2835 | 7.6769 | 7.8567 | 7.7813 | 7.8771 | 7.9793
0.71892 | 7.6081 | 8.2233 | 8.4387 | 8.2980 | 8.4029 | 8.4371
0.67472 | 7.8156 | 8.8039 | 9.1300 | 8.9540 ' 9.0833 | 8.9984
0.62719 | 7.9101 | 9.3172 | 9.8642 | 9.7360 | 9.8871 | 9.6695
0.57605 @ 7.9336 | 9.6589 | 10.5745 | 10.6628 | 10.8592 | 10.6415
0.52104 | 7.9291 = 9.7898 | 11.0796 | 11.5275 | 11.8613 | 11.9200
0.46187 | 7.9188 | 9.8100 | 11.3667 | 12.1405 | 12.7017 | 13.3638
0.39823 | 7.9056 | 9.7822 | 11.4917 | 12.4468 | 13.2472 | 14.7292
0.32976 | 7.8933 | 9.7539 | 11.5069 | 12.4740 @ 13.4493 | 15.5563
0.25611 | 7.8839 | 9.7385 | 11.4735 | 12.3895 | 13.4234 | 15.6984
0.17689 | 7.8780 | 9.7272 | 11.4279 | 12.3410 | 13.3384 | 15.4442
0.09167 | 7.8748 | 9.7209 | 11.4000 | 12.3408 @ 13.2772 | 15.1296
0.00000 | 7.8740 | 9.7186 | 11.3926 | 12.3450 @ 13.2504 | 15.0204

Table 2. Primary Reattachment Length (z,/S)

Re 389 | 500 600 648 700 800
LSFEM | 7.874 | 9.719 | 11.393 | 12.345 | 13.253 | 15.020
Exp. 8.67 | 10.21 | 11.40 | 12.36 | 13.10 | 14.45




Table 3. Detachment Length (z4/S) of Secondary Eddy at Upper Wall

z/W | Re=389 | Re=500 | Re=600 | Re=648 | Re=T00 Re=800
0.97708 | 3.0831 | 3.0024 | 2.8182 | 2.8258 | 2.7367 | 2.6701
0.95243 | 4.2783 | 4.1200 | 3.8681 | 3.8440 | 3.7324 | 3.6367
0.92591 | 5.6721 | 5.2026 | 4.9072 | 4.7961 | 4.6904 | 4.5429
0.89739 | 7.8333 | 6.1612 | 5.7713 | 5.5829 | 5.5169 | 5.3662
0.86670 - 7.3190 | 6.6515 | 6.3569 | 6.3083 | 6.1724
0.83370 - - 7.6409 | 7.2013 | 7.1027 | 6.9149
0.79819 - - 9.0375 | 8.2846 | 8.0603 | 7.6900
0.76000 - - 11.3750 | 9.6379 | 9.3417 | 8.7960
0.71892 - - - 10.7500 | 10.5547 | 10.0307
0.67472 - - - - 11.9552 | 11.0541
0.62719 - - - - - 12.2672
0.57605 - - - - - 14.1967

Table 4. Reatachment Length (z5/S) of Secondary Eddy at Upper Wall

z/W | Re=389 | Re=500 | Re=600 | Re=648 | Re=700 Re=800
0.97708 | 13.7775 | 17.2220 | 20.3110 | 21.1037 | 22.7215 | 24.6619
0.95243 | 13.3167 | 17.0891 | 20.0150 | 20.9073 | 22.5413 | 24.2501
0.92591 | 12.2407 | 16.7674 | 19.6285 | 20.9271 | 22.4388 | 24.6982
0.89739 | 9.3224 | 15.3696 | 18.3668 | 19.9921 | 21.4839 | 24.0531
0.86670 - 12.8966 | 16.5111 | 17.8685 | 19.5302 | 22.0990
0.83370 - : - 14.7052 | 15.9967 | 17.7279 | 19.8740
0.79819 - - 13.3818 | 14.9380 | 16.7597 | 18.4722
0.76000 - - 11.5714 | 14.5169 | 16.1456 | 18.1593
0.71892 - - - 14.1530 | 15.7025 | 18.3837
0.67472 - - - - 14.8041 | 18.5512
0.62719 - - - - - 18.1801
0.57605 - - - - - 16.7677
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u (given) \ w=0
v=w=0
N\

u=v=w=0

Figure 1. Backward-facing step geometry and boundary conditions.

Figure 2. Nonuniform mesh ( xy plane and xz plane ).
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